DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Supplementary Examination – Nov 2019

Supplementary Examination – Nov 2019 Brach: B. Tech. Semester –I/II		
Subject: Engineering Physics (PHY103/PHY203) Date: 13/12/2019 Marks: Time:3		
Instructions to the students:		
 All questions are compulsory and each question carries 10 marks Illustrate your answers with neat sketches, diagrams etc. wherever necessary. Necessary data is given in the respective questions. If such data is not given, that the knowledge of the part is part of examination. If some part or parameter is noticed to be missing, you may appropriately assur should mention it clearly 		
Que. 1 Attempt the following.	(10)	
a) Obtain the differential equation of free oscillation and find its general solution.	(8)	
b) Calculate the fundamental frequency of quartz crystal 1 mm thick.	(2)	
Given: density of quartz is 2650 kg/m 3 and Young's modulus is 8 x 10^{10} N/m 2		
	*	
Que. 2 Attempt the following.	(10)	
a) Discuss interference of light in thin film for reflected rays.	(8)	
b) A wedge shaped film is illuminated by light of wavelength 4650 Å. The	(2)	
angle of wedge is 40°. Calculate the fringe separation between two		
consecutive fringes.		
Que. 2 Attempt the following.	(10)	
a) Explain the principle and working of Ruby Laser.	(8)	
b) Calculate the numerical aperture of an optical fibre whose core and	(2)	
cladding are made of materials of refractive indices 1.6 and 1.5		
respectively.		
Que. 3 Attempt the following.	(10)	

a)	Describe Millikan's oil drop method for determination of electronic charge.	(8)
	Find the lowest energy of a neutron confined to a nucleus of size 10 ⁻¹⁴ m.	(2)
b)	Find the lowest energy of a neutron confined to a fideleds of size 10 mil	(2)
		74 OV
Que. 4	Attempt the following.	(10)
a)	Derive the relation between lattice constant and density of the cubic	(8)
	crystal.	
b)	Lead has a FCC crystal structure with an atomic radius of 1.746 Å.	(2)
	Calculate the spacing between (200) and (220) planes.	
Que. 5	Attempt the following.	(10)
· a)	그는 그 그는 그를 하는 것이 되었다. 그는 그는 사람들은 사람들이 되었다면 하는 것이 없었다. 그 전에 가장하는 것이 되었다. 그는 그는 그는 그는 그를 하는 것이다.	(8)
	curve on the basis of domain theory.	
b)	The magnetic susceptibility of a medium is 940 x 10 ⁻⁴ . Calculate its	(2)
	absolute and relative permeability.	
Que. 6	Attempt any two the following.	(10)
a)	Write Maxwell equations in differential and integral form and write its	(5)
	physical significance	
b)	What is Hall effect? Derive an expression for Hall Coefficient and mobility	(5)
,	of charge carriers.	
c)	What is electric polarization? Explain with diagrams different types of	(5)
	polarizations in dielectric	
	그리다 이 경험에는 연극하다면 그 바로 하는데 그리다 하는 사람	
	Paper End	